6. Applicazioni all'algebra

6.1 Radici n-esime di un numero complesso

Siano dati il numero complesso z^* e un numero intero $n \geq 2$.

Si chiama $radice\ n\text{-}esima$ di z^* ogni numero complesso z tale che $z^n=z^*$.

Si osservi che, prendendo $z^*=0$, allora $z^n=0 \Leftrightarrow z=0$, cioè per ogni numero intero n maggiore o uguale a 2 il numero 0 ammette un'unica radice n-esima.

Cerchiamo ora una forma algebrica che esprima tutte le radici n-esime di un numero. Siano dunque

$$z^* = \rho_0(\cos \theta_0 + i \sin \theta_0), \ z^* \neq 0 \quad e \quad z = \rho(\cos \theta + i \sin \theta)$$

allora, da $z^n=z^\ast$ per la formula di De Moivre (4.1) discende

$$\rho^{n}(\cos n\vartheta + i\sin n\vartheta) = \rho_{0}(\cos \vartheta_{0} + i\sin \vartheta_{0})$$

e per l'uguaglianza tra numeri complessi in forma trigonometrica

$$\rho^n = \rho_0 \qquad e \qquad n\vartheta = \vartheta_0 + 2k\pi, \ k \in \mathbb{Z}$$

Essendo ρ e ρ_0 numeri reali positivi, si ha

$$\rho = \sqrt[n]{\rho_0} \qquad e \qquad \vartheta = \frac{\vartheta_0 + 2k\pi}{n}, \ k \in \mathbb{Z}$$
(6.1)

dove $\sqrt[n]{\rho_0}$ è la radice *n*-esima reale di ρ_0 (cioè un numero reale positivo). Vediamo come queste relazioni individuano tutte le radici *n*-esime del numero z^* , o

equivalentemente le n soluzioni dell'equazione nell'incognita z

$$z^n = z^*$$

Proposizione 6.1.1. Le radici n-esime di un numero complesso $z^* \neq 0$ sono in numero pari a n, a due a due distinte, e si ottengono dalle relazioni (6.1) attribuendo a k i valori $0, 1, 2, \ldots, n-1$.

Dimostrazione. Dati $k_1, k_2 \in \mathbb{Z}$, siano z_{k_1} e z_{k_2} le corrispondenti radici n-esime di z^* . Facciamo vedere che $z_{k_1} = z_{k_2}$ se e solo se k_1 e k_2 differiscono di un multiplo intero di n. Infatti, $z_{k_1} = z_{k_2}$ se e solo se i corrispondenti argomenti differiscono di un multiplo intero di 2π , cioè se e solo se

$$\frac{\vartheta_0 + 2k_1\pi}{n} = \frac{\vartheta_0 + 2k_2\pi}{n} + 2h\pi, \ h \in \mathbb{Z}$$

ossia

$$2k_1\pi = 2k_2\pi + 2hn$$

e infine

$$k_1 = k_2 + hn$$

cioè se e solo se

$$k_1 - k_2 = hn, h \in \mathbb{Z}$$

Ne consegue che, se $k_1, k_2 \in \{0, 1, 2, \dots, n-1\}$ e sono distinti, $z_{k_1} \neq z_{k_2}$ in quanto k_1 e k_2 non possono differire di un multiplo intero di n.

Dunque le radici n-esime di un numero complesso non nullo $z^* = \rho_0(\cos \vartheta_0 + i \sin \vartheta_0)$ sono n valori distinti che si ottengono dalla formula

$$z_k = \sqrt[n]{\rho_0} \left(\cos \frac{\theta_0 + 2k\pi}{n} + i \sin \frac{\theta_0 + 2k\pi}{n} \right), \ k \in \{0, 1, 2, \dots, n - 1\}$$
 (6.2)

Se il numero complesso z^* è espresso in forma esponenziale $z^*=\rho_0e^{i\vartheta_0}$, la formula relativa alle radici n-esime diventa:

$$z_k = \sqrt[n]{\rho_0} \cdot e^{i\frac{\vartheta_0 + 2k\pi}{n}}, \quad k \in \{0, 1, 2, \dots, n - 1\}$$
 (6.3)

Come già osservato, nel caso di $z^*=0$ l'unica radice n-esima è 0. Dato che in tal caso ϑ_0 non è definito, per estendere la formula delle radici n-esime di un numero complesso al caso dello zero, possiamo dire che le sue radici n-esime sono n, tutte coincidenti e uguali a 0.

Esempio 6.1.1. Determinare le radici quarte del numero complesso $z^* = 1 - i$.

Soluzione. Innanzitutto trasformiamo z_0 in forma trigonometrica:

$$\rho = \sqrt{2}, \qquad \cos \varphi = \frac{1}{\sqrt{2}}, \qquad \sin \varphi = -\frac{1}{\sqrt{2}}$$

per cui

$$\vartheta_0 = \arg z_0 = \frac{7}{4}\pi + 2k\pi, \ k \in \mathbb{Z}$$

e quindi, considerando solo l'argomento principale,

$$z^* = \sqrt{2} \left(\cos \frac{7}{4} \pi + i \sin \frac{7}{4} \pi \right)$$

Applicando la formula per la determinazione delle radici n-esime, avremo:

$$z_k = \sqrt[4]{\sqrt{2}} \left(\cos \frac{\frac{7}{4}\pi + 2k\pi}{4} + i \sin \frac{\frac{7}{4}\pi + 2k\pi}{4} \right), \ k \in \{0, 1, 2, 3\}$$

e quindi

$$z_0 = \sqrt[8]{2} \left(\cos \frac{7}{16} \pi + i \sin \frac{7}{16} \pi \right) \qquad z_2 = \sqrt[8]{2} \left(\cos \frac{23}{16} \pi + i \sin \frac{23}{16} \pi \right)$$

$$z_1 = \sqrt[8]{2} \left(\cos \frac{15}{16} \pi + i \sin \frac{15}{16} \pi \right) \qquad z_3 = \sqrt[8]{2} \left(\cos \frac{31}{16} \pi + i \sin \frac{31}{16} \pi \right) \qquad \Box$$

A titolo di esempio facciamo vedere che per k = 4 si riottiene la soluzione z_0 :

$$z_4 = \sqrt[8]{2} \left(\cos \frac{\frac{7}{4}\pi + 8\pi}{4} + i \sin \frac{\frac{7}{4}\pi + 8\pi}{4} \right) =$$

$$= \sqrt[8]{2} \left(\cos \frac{39}{16}\pi + i \sin \frac{39}{16}\pi \right) =$$

$$= \sqrt[8]{2} \left[\cos \left(2\pi + \frac{7}{16}\pi \right) + i \sin \left(2\pi + \frac{7}{16}\pi \right) \right] =$$

$$= \sqrt[8]{2} \left(\cos \frac{7}{16}\pi + i \sin \frac{7}{16}\pi \right) = z_0$$

6.1.1 Radici n-esime dell'unità

Un caso particolare di calcolo di radici n-esime di un numero complesso è quello relativo a $z^* = 1$ o, che è lo stesso, calcolare le soluzioni dell'equazione $z^n = 1$. In questo caso, essendo

$$\rho_0 = 1 \qquad e \qquad \vartheta_0 = 0 + 2k\pi, \ k \in \mathbb{Z}$$

la formula (6.2) relativa alla determinazione delle radicin-esime del numero complesso $z^*=1$ diverrà

$$z_k = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}, \quad k \in \{0, 1, 2, \dots, n-1\}$$

La sua versione esponenziale (6.3) diventa invece

$$z_k = e^{i\frac{2k\pi}{n}}, \quad k \in \{0, 1, 2, \dots, n-1\}$$

Esempio 6.1.2. Determiniamo le radici terze dell'unità o, in maniera equivalente, risolviamo l'equazione $z^3 = 1$.

Essendo

$$z_k = \cos\frac{2k\pi}{3} + i\sin\frac{2k\pi}{3}, \quad k \in \{0, 1, 2\}$$

avremo per

$$k = 0$$

$$z_0 = \cos 0 + i \sin 0 = 1$$

$$k = 1$$

$$z_1 = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} = -\frac{1}{2} + i \frac{\sqrt{3}}{2}$$

$$k = 2$$

$$z_2 = \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3} = -\frac{1}{2} - i \frac{\sqrt{3}}{2}$$

Notare che z_1 e z_2 sono numeri complessi coniugati.

Proprietà delle radici n-esime dell'unità

Premesso che la formula che permette di calcolare le radici n-esime dell'unità

$$z_k = \cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n}$$

per k=0 dà $z_0=1$ e per k=1 dà $z_1=\cos\frac{2\pi}{n}+i\sin\frac{2\pi}{n}$, dimostriamo alcune proprietà di cui godono le radici n-esime dell'unità.

Proposizione 6.1.2. La k-esima radice n-esima dell'unità si può ottenere elevando z_1 alla k, cioè in simboli

$$z_k = z_1^k, \quad k \in \{0, 1, 2, \dots, n-1\}$$
 (6.4)

Dimostrazione. Dalla formula (6.2) che dà tutte le radici n-esime dell'unità, applicando la formula di De Moivre (4.1) si ha

$$z_1^k = \left(\cos\frac{2\pi}{n} + i\sin\frac{2\pi}{n}\right)^k = \cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n} = z_k \qquad \Box$$

Proposizione 6.1.3. Qualunque siano z_p e z_q , radici n-esime dell'unità, di argomento rispettivamente $\frac{2p}{n}\pi$ e $\frac{2q}{n}\pi$, allora z_q^{-1} e $z_p \cdot z_q^{-1}$, aventi per argomento rispettivamente $-\frac{2q}{n}\pi$ e $\frac{2(p-q)}{n}\pi$, sono radici n-esime dell'unità.

Dimostrazione. Poiché z_q è per ipotesi radice n-esima dell'unità, ovvero $z_q^n=1,$ avremo che

$$(z_q^{-1})^n = \left(\frac{1}{z_q}\right)^n = \frac{1}{(z_q)^n} = 1$$

e così è dimostrato che anche z_q^{-1} è radice n-esima dell'unità.

Analogamente,

$$(z_p \cdot z_q^{-1})^n = (z_p)^n \cdot \left(\frac{1}{z_q}\right)^n = 1$$

e anche $z_p \cdot z_q^{-1}$ è radice *n*-esima dell'unità.

Proposizione 6.1.4. La somma di tutte le radici n-esime dell'unità è zero, cioè

$$\sum_{k=0}^{n-1} z_k = 0$$

Dimostrazione. Poiché per la proprietà (6.4) $z_k = z_1^k$, avremo

$$\sum_{k=0}^{n-1} z_k = \sum_{k=0}^{n-1} z_1^k$$

ossia esplicitando il membro di destra

$$\sum_{k=0}^{n-1} z_k = 1 + z_1 + z_1^2 + \dots + z_1^{n-1}$$

e, moltiplicando e dividendo il membro di destra per $z_1 - 1 \neq 0$,

$$\sum_{k=0}^{n-1} z_k = \frac{(1+z_1+z_1^2+\dots+z_1^{n-1})(z_1-1)}{z_1-1} = \frac{z_1^n-1}{z_1-1} = 0$$

in quanto $z_1^n = 1$.

Proposizione 6.1.5. Per determinare tutte le radici n-esime di un numero complesso non nullo basta moltiplicare una sua qualunque radice n-esima per le radici n-esime dell'unità.

Dimostrazione. Sia z^* un numero complesso non nullo di modulo ρ_0 e argomento ϑ_0 e siano z e z_1 due sue radici n-esime, cioè

$$z_1 = \sqrt[n]{\rho_0}(\cos\vartheta_1 + i\sin\vartheta_1)$$
 e $z_2 = \sqrt[n]{\rho_0}(\cos\vartheta_2 + i\sin\vartheta_2)$

essendo

$$\vartheta_1 = \frac{\vartheta_0 + 2k_1\pi}{n}$$
 e $\vartheta_2 = \frac{\vartheta_0 + 2k_2\pi}{n}$

per opportuni valori di $k_1, k_2 \in \{0, 1, 2, ..., n-1\}.$

Vogliamo dimostrare che una di esse, per esempio z_2 , si ottiene da z_1 moltiplicandola per una radice n-esima dell'unità.

Infatti il numero complesso

$$\frac{z_2}{z_1} = \frac{\sqrt[n]{\rho_0}}{\sqrt[n]{\rho_0}} \cdot \frac{\cos\vartheta_2 + i\sin\vartheta_2}{\cos\vartheta_1 + i\sin\vartheta_1} = \cos(\vartheta_2 - \vartheta_1) + i\sin(\vartheta_2 - \vartheta_1)$$

ha modulo 1 e argomento

$$\vartheta_2 - \vartheta_1 = \frac{\vartheta_0 + 2k_2\pi - \vartheta_0 - 2k_1\pi}{n} = \frac{2(k_2 - k_1)\pi}{n}$$

e quindi è una radice n-esima dell'unità, che indicheremo con j.

Pertanto

$$\frac{z_2}{z_1} = j$$

e ne segue che

$$z_2 = z_1 \cdot i$$

come volevasi dimostrare.

Essendo le n radici n-esime dell'unità j_k a due a due distinte, saranno a due a due distinti anche i numeri complessi $z_1 \cdot j_k$. Di conseguenza, poiché ognuno di essi è una radice n-esima di z_0 , si ha la tesi.

Proposizione 6.1.6. Le radici n-esime dell'unità sono a due a due coniugate.

Dimostrazione. $z^n = 1$ è un'equazione a coefficienti reali, perciò, in base al Teorema 3.1.3, per ogni radice n-esima dell'unità, che è radice dell'equazione, si ha che anche il suo coniugato è radice dell'equazione, ed è pertanto a sua volta una radice n-esima dell'unità.

Esempio 6.1.3. Determiniamo le radici cubiche di $z=(2-i)^3$.

Sviluppando il cubo otteniamo

$$z = (2-i)^3 = 8 - 12i + 6i^2 - i^3 = 2 - 11i$$

Chiaramente 2-i è una radice cubica di z=2-11i.

Le altre due si otterranno moltiplicando 2-i per le radici cubiche dell'unità, che abbiamo già calcolato nell'Esempio 6.1.2, pertanto

$$z_0 = (2 - i) \cdot 1 = 2 - i$$

$$z_1 = (2 - i) \cdot \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = \frac{-2 + \sqrt{3}}{2} + i\frac{1 + 2\sqrt{3}}{2}$$

$$z_2 = (2 - i) \cdot \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = \frac{-2 - \sqrt{3}}{2} + i\frac{1 - 2\sqrt{3}}{2}$$

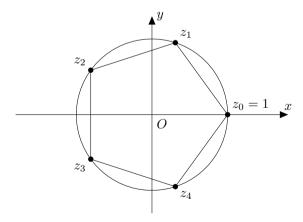
Le radici n-esime sul piano complesso

Poiché tutte le radici n-esime di un numero complesso z^* hanno lo stesso modulo $\sqrt[n]{\rho_0}$, i loro corrispondenti punti immagine stanno sulla circonferenza di centro l'origine O(0,0) e raggio $\sqrt[n]{\rho_0}$.

Inoltre, poiché ciascuna radice n-esima differisce dalla successiva per una stessa frazione di angolo giro, congiungendo i loro punti immagine, uno di seguito all'altro, si ottiene un poligono regolare inscritto nel cerchio di centro O e raggio $\sqrt[n]{\rho_0}$.

In particolare, se si tratta delle radici n-esime dell'unità, i loro punti immagine rappresentano i vertici del poligono regolare di n lati inscritto nel cerchio trigonometrico e un suo vertice è sempre il punto (1,0).

Vediamo ad esempio la posizione sul piano delle radici quinte dell'unità.



6.2 Particolari somme di coefficienti di polinomi

Vediamo ora come è possibile sfruttare i numeri complessi, e in particolare le radici n-esime dell'unità, per calcolare particolari somme di coefficienti di un polinomio dato.

Sia dato un polinomio di grado n a coefficienti complessi

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Calcolare p(1) equivale a calcolare la somma dei suoi coefficienti $a_0, a_1, a_2, \ldots, a_n$:

$$p(1) = a_0 + a_1 \cdot 1 + a_2 \cdot 1^2 + \dots + a_n \cdot 1^n = a_0 + a_1 + a_2 + \dots + a_n$$

Osserviamo poi che p(-1) dà la somma alterna dei coefficienti

$$p(-1) = a_0 + a_1 \cdot (-1) + a_2 \cdot (-1)^2 + \dots + a_n \cdot (-1)^n = a_0 - a_1 + a_2 - \dots + (-1)^n a_n$$

Sommando le ultime due relazioni si ottiene

$$p(1) + p(-1) = (a_0 + a_1 + a_2 + \dots + a_n) + (a_0 - a_1 + a_2 - \dots + (-1)^n a_n)$$
$$= 2a_0 + 2a_2 + 2a_4 + \dots$$

e quindi dividendo per 2 otteniamo la somma dei soli coefficienti di indice pari:

$$\frac{p(1) + p(-1)}{2} = \frac{2a_0 + 2a_2 + 2a_4 + \dots}{2} = a_0 + a_2 + a_4 + \dots$$

Sottraendo invece le due relazioni, e dividendo poi per 2, si ottiene la somma dei coefficienti di indice dispari:

$$\frac{p(1) - p(-1)}{2} = \frac{(a_0 + a_1 + a_2 + \dots + a_n) - (a_0 - a_1 + a_2 - \dots + (-1)^n a_n)}{2}$$
$$= \frac{2a_1 + 2a_3 + 2a_5 + \dots}{2} = a_1 + a_3 + a_5 + \dots$$

Si noti che i numeri 1 e -1, sui quali abbiamo calcolato il valore del polinomio p(x), sono le due radici quadrate dell'unità in senso complesso.

Prendiamo ora in considerazione le radici terze dell'unità, soluzioni dell'equazione $x^3 - 1 = 0$. Scomponiamo il polinomio e otteniamo $(x - 1)(x^2 + x + 1) = 0$; concentriamoci sulle due radici complesse z_1 e z_2 del polinomio $x^2 + x + 1$: sappiamo che per la (6.4) vale $z_2 = z_1^2$, perciò per comodità chiameremo $z = z_1$ e $z^2 = z_2$. Teniamo presente anche che calcolando le potenze successive di z si ottengono ciclicamente $1, z, z^2$. Calcoliamo il valore di p(x) su z e z^2 :

$$p(z) = a_0 + a_1 z + a_2 z^2 + a_3 z^3 + \dots + a_n z^n =$$

$$= a_0 + a_1 z + a_2 z^2 + a_3 + \dots + a_n z^n$$

$$p(z^2) = a_0 + a_1 z^2 + a_2 z^4 + a_3 z^6 + \dots + a_n z^{2n}$$

$$= a_0 + a_1 z^2 + a_2 z + a_3 + \dots + a_n z^{2n}$$

Ora sommiamo i tre valori

$$p(1) + p(z) + p(z^{2}) = (a_{0} + a_{1} + a_{2} + a_{3} + \dots + a_{n}) + (a_{0} + a_{1}z + a_{2}z^{2} + a_{3} + \dots + a_{n}z^{n}) + (a_{0} + a_{1}z^{2} + a_{2}z + a_{3} + \dots + a_{n}z^{2n})$$

Raccogliamo i coefficienti a_i :

$$p(1) + p(z) + p(z^{2}) = a_{0}(1+1+1) + a_{1}(1+z+z^{2}) + a_{2}(1+z^{2}+z) + a_{3}(1+1+1) + \dots + a_{n}(1+z^{n}+z^{2n})$$

Ricordiamo che z è radice del polinomio $x^2+x+1,$ pertanto $z^2+z+1=0,$ e dunque

$$p(1) + p(z) + p(z^2) = 3a_0 + 3a_3 + 3a_6 + \cdots$$

Concludiamo dividendo per 3:

$$\frac{p(1) + p(z) + p(z^2)}{3} = a_0 + a_3 + a_6 + \cdots$$

Si può intuire che, più in generale, vale la seguente proprietà.

Proposizione 6.2.1. Sia $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ un polinomio a coefficienti complessi di grado n. Sia $k \geq 2$ un numero intero e siano $1, z_1, z_2, \ldots, z_{k-1}$ le radici k-esime dell'unità. Allora la somma dei coefficienti di p(x), presi uno ogni k a partire da a_0 , vale

$$a_0 + a_k + a_{2k} + \dots = \frac{p(1) + p(z_1) + p(z_2) + \dots + p(z_{k-1})}{k}$$
 (6.5)

Riprendiamo il caso con k=3 e osserviamo ora che, se vogliamo ottenere la somma dei coefficienti presi uno ogni tre, ma a partire da a_1 , vale a dire $a_1 + a_4 + a_7 + \cdots$, è sufficiente "traslare" i coefficienti del polinomio p(x) in modo che a_1, a_4, a_7, \ldots diventino i coefficienti di x^3, x^6, x^9, \ldots ; basta moltiplicare p(x) per x^2 per ottenere

$$q_1(x) = x^2 p(x) = a_0 x^2 + a_1 x^3 + a_2 x^4 + \dots + a_n x^{n+2}$$

e applicare la relazione precedente al polinomio $q_1(x)$.

Analogamente, se vogliamo partire da a_2 prendiamo il polinomio $q_2(x) = xp(x)$, in cui a_2 sarà il coefficiente di x^3 .

Più in generale possiamo affermare che

Corollario 6.2.2. Nelle notazioni della Proposizione 6.2.1, fissato un intero $t \in \{1, 2, ..., k-1\}$, la somma dei coefficienti di p(x), presi uno ogni k a partire da a_t , si ottiene applicando la relazione (6.5) al polinomio $q_t(x) = x^{k-t}p(x)$.

Esempio 6.2.1. Dato il polinomio $p(x) = \left(\frac{x^4 + x^2 + 1}{3}\right)^{100}$, supponendo che la sua forma normale sia $p(x) = a_0 + a_1x + a_2x^2 + \dots + a_{400}x^{400}$, calcolare il valore della somma $a_0 + a_3 + a_6 + \dots + a_{399}$.

Soluzione. Dovendo considerare un coefficiente ogni tre, sarà utile calcolare il valore di p(x) sulle tre radici terze dell'unità $1, z, z^2$.

$$p(1) = \left(\frac{1^4 + 1^2 + 1}{3}\right)^{100} = \left(\frac{1 + 1 + 1}{3}\right)^{100} = \left(\frac{3}{3}\right)^{100} = 1$$

$$p(z) = \left(\frac{z^4 + z^2 + 1}{3}\right)^{100} = \left(\frac{z + z^2 + 1}{3}\right)^{100} = \left(\frac{0}{3}\right)^{100} = 0$$

$$p(z^2) = \left(\frac{(z^2)^4 + (z^2)^2 + 1}{3}\right)^{100} = \left(\frac{z^2 + z + 1}{3}\right)^{100} = \left(\frac{0}{3}\right)^{100} = 0$$

Pertanto

$$a_0 + a_3 + a_6 + \dots + a_{399} = \frac{p(1) + p(z) + p(z^2)}{3} = \frac{1 + 0 + 0}{3} = \frac{1}{3}$$

6.2.1 Particolari somme di coefficienti binomiali

Possiamo sfruttare la relazione enunciata nella Proposizione 6.2.1 per ottenere particolari somme di coefficienti binomiali.

Consideriamo ad esempio la somma

$$\binom{100}{0} + \binom{100}{3} + \binom{100}{6} + \dots + \binom{100}{99}$$

È noto che i binomiali compaiono come coefficienti nello sviluppo delle potenze di un binomio; in particolare,

$$p(x) = (1+x)^{100} = {100 \choose 0} + {100 \choose 1}x + {100 \choose 2}x^2 + \dots + {100 \choose 100}x^{100}$$

Avendo quindi costruito un polinomio di grado 100 che ha per coefficienti esattamente i 101 binomiali $\binom{100}{0}$, $\binom{100}{1}$, $\binom{100}{2}$, ..., $\binom{100}{100}$, per ricavare la somma richiesta basterà applicare la Proposizione 6.2.1 al polinomio p(x) appena definito.